# Variational inference



UVA DEEP LEARNING COURSE EFSTRATIOS GAVVES – 1 • Assume you have statistics p(x, z) of eye colors x per nationality z

|       | Dutch | Greek | Chinese | Indian | Italian | German | US   | Spanish |
|-------|-------|-------|---------|--------|---------|--------|------|---------|
| Brown | 0.02  | 0.03  | 0.02    | 0.01   | 0.07    | 0.03   | 0.01 | 0.00    |
| Blue  | 0.09  | 0.01  | 0.03    | 0.03   | 0.08    | 0.04   | 0.03 | 0.06    |
| Green | 0.01  | 0.01  | 0.08    | 0.06   | 0.07    | 0.08   | 0.06 | 0.06    |

- If we want to know the distribution of one of our variables (*e.g.*, eye colors)
   → we sum up over all possible outcomes (marginalize) of the other variable
  - *E.g.*, nationalities for the marginal likelihood  $p(x) = \sum_{z} p(x, z)$

| Color |      |
|-------|------|
| Brown | 0.19 |
| Blue  | 0.37 |
| Green | 0.44 |
| Total | 1.00 |

• Or assume that <u>our bottom half pixels</u> are visible (*x*) and the upper half not (*z*)



- Assume we somehow know a good model p(x, z) of how the visible and hidden/latent pixels interact
- Let's say we want to know how likely bottom half the image is to be observed
- We must marginalize out all possible latents *z* to fill the rest of the image
   For instance, some pictures might contain one, two, or more elephants

$$p(\boldsymbol{x}) = \sum_{\boldsymbol{z}} p(\boldsymbol{x}, \boldsymbol{z})$$

#### Marginal likelihood in latent variable models

When "learning to represent" an input *x* we assume a latent variable *z*and try to explain *x* using all possible *z*

$$p(\mathbf{x}) = \int_{\mathbf{z}} p(\mathbf{x}, \mathbf{z}) d\mathbf{z} = \int_{\mathbf{z}} p(\mathbf{x} | \mathbf{z}) p(\mathbf{z}) d\mathbf{z} = \mathbb{E}_{\mathbf{z} \sim \mathbf{p}(\mathbf{z})} [p_{\theta}(\mathbf{x} | \mathbf{z})]$$

- Hence, a latent variable model can be viewed as a generation process
  - First, we generate a new z from p(z) by sampling
  - Then, we generate a new  $\boldsymbol{x}$  by sampling from the  $p(\boldsymbol{x}|\boldsymbol{z})$  given the sampled  $\boldsymbol{z}$



- Question: how to find the optimal parameters  $\theta$ ?
- Maximizing log-likelihood, again

$$\log \prod_{\mathbf{x} \in D} p(\mathbf{x}) = \sum_{\mathbf{x}} \log p(\mathbf{x}) = \sum_{\mathbf{x}} \log \sum_{\mathbf{z}} p_{\theta}(\mathbf{x}, \mathbf{z})$$

- Like in Boltzmann machines, the  $\sum_{z}$  ... is a nasty one
  - E.g., for a 3-dimensional binary **z** iterate over [0,0,0],[0,0,1],[0,1,1],...
  - For 20 dimensions  $2^{20} \approx 1M$  latents and generations. <u>Per image x!</u>
  - For continuous **z** even harder, we cannot even enumerate

## Making $p_{\theta}(x, z)$ tractable with naive Monte Carlo

- We want to optimize per data point  $x: \log \sum_{z} p_{\theta}(x, z)$
- The sum contains a bunch of probabilities
   equivalent to expected value times the number of summands

$$\log \sum_{\mathbf{z}} p_{\boldsymbol{\theta}}(\mathbf{x}, \mathbf{z}) = \log |\mathbf{z}| \mathbb{E}[p_{\boldsymbol{\theta}}(\mathbf{x}, \mathbf{z})]$$

- Do we need all the summands to compute the expected value (average)
  - No, if we sample randomly *z* (uniformly) and average, it gives us an estimate
    Basically replace whole sum with a weighted smaller sum

$$\log |\mathbf{Z}| \mathbb{E}[p_{\theta}(\mathbf{x}, \mathbf{z})] \approx \log \frac{|\mathbf{Z}|}{K} \mathbb{E}_{\mathbf{z} \sim \text{Uniform}}^{(K)}[p_{\theta}(\mathbf{x}, \mathbf{z})] = \log \frac{|\mathbf{Z}|}{K} \sum_{k=1}^{K} p_{\theta}(\mathbf{x}, \mathbf{z}_{k})$$

- Doesn't scale, too many samples for the expectation estimate to be accurate • Most  $\mathbf{z}_k$  would be in 'very low density regions'  $\rightarrow$  Unimportant  $p_{\theta}(\mathbf{x}, \mathbf{z}_k)$ 
  - In technical terms, this is a 'high variance' estimator

# Making $p_{\theta}(x, z)$ tractable with importance sampling MC

- Better if select few good summands in the sum  $\sum_{k=1}^{K} p_{\theta}(x, z_k)$
- If, theoretically, we had a nice distribution around the mass of relevant *z<sub>k</sub>* we could use that distribution to sample *z<sub>k</sub>* and get a better sample average with fewer *k*

$$\log \sum_{\mathbf{z}} p_{\theta}(\mathbf{x}, \mathbf{z}) = \log \sum_{\mathbf{z}} q_{\varphi}(\mathbf{z}) \frac{1}{q_{\varphi}(\mathbf{z}_{k})} p_{\theta}(\mathbf{x}, \mathbf{z}_{k})$$
$$= \log \mathbb{E}_{\mathbf{z} \sim \boldsymbol{q}_{\varphi}(\mathbf{z})} \left[ \frac{p_{\theta}(\mathbf{x}, \mathbf{z})}{q_{\varphi}(\mathbf{z})} \right] \approx \log \frac{1}{K} \sum_{k=1}^{K} \frac{p_{\theta}(\mathbf{x}, \mathbf{z}_{k})}{q_{\varphi}(\mathbf{z}_{k})}, \text{ where } \mathbf{z}_{k} \text{ are sampled from } \boldsymbol{q}_{\varphi}(\mathbf{z}_{k})$$

- Note the dual use of  $q_{\varphi}(\mathbf{z}_k)$ 
  - In the nominator  $q_{\varphi}(\mathbf{z}_k)$  is the density function we use as sampling mechanism. By sampling from it (e.g., Gaussian samples if it is Gaussian) this quantity is used and disappears by the sum
  - In the denominator  $q_{\varphi}(\mathbf{z}_k)$  is simply a function. We feed it  $\mathbf{z}_k$  and returns how important  $\mathbf{z}_k$  is for our probability space
- Scales much better and with much lower variance, but we don't know what is a good  $q_{\varphi}(\mathbf{z}_k)$

### Learning the importance sampling distribution

- Importance sampling is promising but how to determine  $q_{\varphi}(\mathbf{z}_k)$ ?
- Learn  $q_{\varphi}(\mathbf{z}_k)$  from data!
- Our learning objective is to maximize the log probability

$$\log \mathbb{E}_{\boldsymbol{z} \sim q_{\boldsymbol{\varphi}}(\boldsymbol{z})} \left[ \frac{p_{\boldsymbol{\theta}}(\boldsymbol{x}, \boldsymbol{z})}{q_{\boldsymbol{\varphi}}(\boldsymbol{z})} \right] \approx \log \frac{1}{K} \sum_{k=1}^{K} \frac{p_{\boldsymbol{\theta}}(\boldsymbol{x}, \boldsymbol{z}_{k})}{q_{\boldsymbol{\varphi}}(\boldsymbol{z}_{k})}$$

- The log E stands for logarithm of an unknown integral
   not very convenient for derivations and computations
- Would be much nicer if we could swap the log  $\mathbb{E}$  to  $\mathbb{E}$  log
  - Then we would simply need the expectation of the logarithm of a function
  - Especially convenient if  $p_{\theta}(x, z)$  belongs to the exponential family

## Jensen's inequality

- A concave function *h* (like a logarithm)on a sum will always be larger than the sum of *h* on individual summands
  - Basically, a line connecting two points of a function will be always below the function

$$h(tx_1 + (1-t)x_2) \ge th(x_1) + (1-t)h(x_2)$$

• With probabilities and random variables this translates to

 $h(\mathbb{E}[\mathbf{x}]) \geq \mathbb{E}[h(\mathbf{x})]$ 



#### A lower bound on the maximum likelihood

• By applying Jensen's inequality

$$\log \mathbb{E}_{\boldsymbol{z} \sim \boldsymbol{q}_{\varphi}(\boldsymbol{z})} \left[ \frac{p_{\theta}(\boldsymbol{x}, \boldsymbol{z})}{q_{\varphi}(\boldsymbol{z})} \right] \geq \mathbb{E}_{\boldsymbol{z} \sim \boldsymbol{q}_{\varphi}(\boldsymbol{z})} \left[ \log \frac{p_{\theta}(\boldsymbol{x}, \boldsymbol{z})}{q_{\varphi}(\boldsymbol{z})} \right]$$

• We replaced the original ML objective with a quantity that is always smaller • (1) By improving  $\mathbb{E}_{z \sim q_{\varphi}(z)} \left[ \log \frac{p_{\theta}(x,z)}{q_{\varphi}(z)} \right]$  we always improve  $\log \mathbb{E}_{z \sim q_{\varphi}(z)} \left[ \frac{p_{\theta}(x,z)}{q_{\varphi}(z)} \right]$ 

'Lower bound'

(2) E<sub>z~q<sub>φ</sub>(z)</sub> [log <sup>p<sub>θ</sub>(x,z)</sup>/<sub>q<sub>φ</sub>(z)</sub>] is a tractable & comfortable quantity → easy optimization
 An expectation → Monte Carlo sampling is possible

• The log can couple nicely with  $p_{\theta}$  if chosen properly

## Making $p(\mathbf{z}|\mathbf{x})$ tractable with variational inference

- We can also view variational inference from the lens of intractability
- The problematic quantity in our latent model is the posterior
  - The reason is the intractable normalization

$$p(\boldsymbol{z}|\boldsymbol{x}) = \frac{p(\boldsymbol{x}, \boldsymbol{z})}{p(\boldsymbol{x})} = \frac{p(\boldsymbol{x}, \boldsymbol{z})}{\int \boldsymbol{p}(\boldsymbol{x}, \boldsymbol{z}) d\boldsymbol{z}}$$

• Variational inference approximates the true posterior  $p(\mathbf{z}|\mathbf{x})$  with  $q_{\varphi}(\mathbf{z}|\mathbf{x})$ 

$$\begin{aligned} \operatorname{KL}(q(\mathbf{z}) \parallel p(\mathbf{z}|\mathbf{x})) &= \int q_{\varphi}(\mathbf{z}) \log \frac{q_{\varphi}(\mathbf{z})}{p(\mathbf{z}|\mathbf{x})} d\mathbf{z} \\ &= -\int q_{\varphi}(\mathbf{z}) \log \frac{p(\mathbf{x}, \mathbf{z})}{p(\mathbf{x})q_{\varphi}(\mathbf{z})} d\mathbf{z} = -\int q_{\varphi}(\mathbf{z}) \log \frac{p(\mathbf{x}, \mathbf{z})}{q_{\varphi}(\mathbf{z})} + \int q_{\varphi}(\mathbf{z}) \log p(\mathbf{x}) d\mathbf{z} \\ &= -\mathbb{E}_{q_{\varphi}(\mathbf{z})} \left[ \log \frac{p(\mathbf{x}, \mathbf{z})}{q_{\varphi}(\mathbf{z})} \right] + \log p(\mathbf{x}) \end{aligned}$$

• 
$$\mathbb{E}_{\mathbf{z} \sim \boldsymbol{q}_{\boldsymbol{\varphi}}(\mathbf{z})} \left[ \log \frac{p_{\boldsymbol{\theta}}(\mathbf{x}, \mathbf{z})}{q_{\boldsymbol{\varphi}}(\mathbf{z})} \right]$$
 also known as 'evidence lower bound'  
 $\log p(\mathbf{x}) = \mathbb{E}_{q(\mathbf{z})} \left[ \log \frac{p(\mathbf{x}, \mathbf{z})}{q_{\boldsymbol{\varphi}}(\mathbf{z})} \right] + \mathrm{KL} \left( q_{\boldsymbol{\varphi}}(\mathbf{z}) \parallel p(\mathbf{z}|\mathbf{x}) \right)$   
 $= \mathrm{ELBO} + \mathrm{KL} \left( q_{\boldsymbol{\varphi}}(\mathbf{z}) \parallel p(\mathbf{z}|\mathbf{x}) \right)$ 

- Why 'evidence'?
  - The KL term is always positive
  - If we drop it, we bound the log evidence  $\log p(x)$  from below

$$\log p(\mathbf{x}) \geq \mathbb{E}_{q_{\boldsymbol{\varphi}}(\mathbf{z})} \left[ \log \frac{p_{\boldsymbol{\theta}}(\mathbf{x}, \mathbf{z})}{q_{\boldsymbol{\varphi}}(\mathbf{z})} \right]$$

- Higher ELBO  $\rightarrow$  smaller difference to true  $p_{\theta}(\mathbf{z}|\mathbf{x}) \rightarrow$  better latent representation
- Higher ELBO  $\rightarrow$  gap to log-likelihood tightens  $\rightarrow$  better density model

#### Variational inference, graphically



#### ELBO balancing reconstruction and the prior

• We can expand the ELBO as

$$\mathbb{E}_{q(z)} \left[ \log \frac{p(x, z)}{q_{\varphi}(z)} \right] = \mathbb{E}_{q(z)} \left[ \log \frac{p_{\theta}(x|z)p(z)}{q_{\varphi}(z)} \right]$$
$$= \mathbb{E}_{q_{\varphi}(z)} \left[ \log p_{\theta}(x|z) \right] - \mathrm{KL} \left[ q_{\varphi}(z) \parallel p(z) \right]$$

- The first term encourages the reconstructions that the maximize likelihood
- The second term minimizes the distance of the variational distribution from the prior

• We can also expand the ELBO as

$$\mathbb{E}_{q_{\varphi}(z)} \left[ \log \frac{p(x, z)}{q_{\varphi}(z)} \right] = \mathbb{E}_{q_{\varphi}(z)} \left[ \log \frac{p_{\theta}(x|z)p(z)}{q_{\varphi}(z)} \right]$$
$$= \mathbb{E}_{q(z)} [\log p(x, z)] - \mathbb{E}_{q(z)} [\log q_{\varphi}(z)]$$
$$= \mathbb{E}_{q(z)} [\log p(x, z)] + H(q_{\varphi}(z))$$

where  $H(\cdot)$  is the entropy

- Maximizing the joint likelihood  $\rightarrow$  Something like the Boltzmann energy
- While maintaining enough entropy ('uncertainty') in the distribution of latents
   Avoiding latents to collapse to pathological, point estimates (*z* as single values)

#### Variational inference underestimates variance

Approximate posterior

• If you noticed, for the second way to derive the ELBO we minimized

$$\mathrm{KL}(q_{\varphi}(\boldsymbol{z}) \parallel p(\boldsymbol{z}|\boldsymbol{x})) = \int q_{\varphi}(\boldsymbol{z}) \log \frac{q_{\varphi}(\boldsymbol{z})}{p(\boldsymbol{z}|\boldsymbol{x})} d\boldsymbol{z}$$

- We want to sample from  $q_{\varphi}(z)$  in expectations later on, as p(z|x) is intractable
- The model wants to approximate  $p(\mathbf{z}|\mathbf{x}) \rightarrow \text{can't really know where } p(\mathbf{z}|\mathbf{x})$  is low
- The model prefers to hedge and 'bias'  $q_{\varphi}(z)$  towards 0 for regions it can't be certain
  - Better pick one mode (randomly) than miss a 'zero' density region of  $p(\boldsymbol{z}|\boldsymbol{x})$  and skyrocket the  $\frac{q_{\varphi}(\boldsymbol{z})}{p(\boldsymbol{z}|\boldsymbol{x})}$ True posterior  $1^{\text{st}}$  run  $2^{\text{nd}}$  run



Model ignores this mode<sup>-</sup>

Model ignores this mode

#### How to overestimate variance?

• You would need to use the forward KL

$$\mathrm{KL}(p(\boldsymbol{z}|\boldsymbol{x}) \parallel q_{\boldsymbol{\varphi}}(\boldsymbol{z})) = \int p(\boldsymbol{z}|\boldsymbol{x}) \log \frac{p_{\boldsymbol{\theta}}(\boldsymbol{z}|\boldsymbol{x})}{q_{\boldsymbol{\varphi}}(\boldsymbol{z})} d\boldsymbol{z}$$

• The model would prefer placing some density everywhere • That way it avoids  $\frac{p(\mathbf{Z}|\mathbf{X})}{q_{\varphi}(\mathbf{z})}$  skyrocketing if it misses areas where  $p(\mathbf{Z}|\mathbf{X})$ 

