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o Assume you have statistics 𝑝(𝑥, 𝑧) of eye colors 𝑥 per nationality 𝑧

o If we want to know the distribution of one of our variables (e.g., eye colors)
◦ → we sum up over all possible outcomes (marginalize) of the other variable

◦ E.g.,  nationalities for the marginal likelihood 𝑝 𝑥 = σ𝑧 𝑝(𝑥, 𝑧)

Marginal likelihood 

Dutch Greek Chinese Indian Italian German US Spanish

Brown 0.02 0.03 0.02 0.01 0.07 0.03 0.01 0.00

Blue 0.09 0.01 0.03 0.03 0.08 0.04 0.03 0.06

Green 0.01 0.01 0.08 0.06 0.07 0.08 0.06 0.06

Color

Brown 0.19

Blue 0.37

Green 0.44

Total 1.00
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o Or assume that our bottom half pixels are visible (𝒙) and the upper half not (𝒛)

o Assume we somehow know a good model 𝑝(𝒙, 𝒛) of how the visible and 
hidden/latent pixels interact

o Let’s say we want to know how likely bottom half the image is to be observed

o We must marginalize out all possible latents 𝒛 to fill the rest of the image
◦ For instance, some pictures might contain one, two, or more elephants

𝑝 𝒙 = 

𝒛

𝑝(𝒙, 𝒛)

Marginal likelihood
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o When “learning to represent” an input 𝑥 we assume a latent variable 𝑧
◦ and try to explain 𝒙 using all possible 𝒛

𝑝 𝒙 = න
𝒛

𝑝(𝒙, 𝒛) 𝑑𝒛 = න
𝒛

𝑝 𝒙 𝒛 𝑝 𝒛 𝑑𝒛 = 𝔼𝒛~𝒑(𝒛)[𝑝𝜽(𝒙|𝒛)]

o Hence, a latent variable model can be viewed as a generation process
◦ First, we generate a new 𝒛 from 𝑝(𝒛) by sampling

◦ Then, we generate a new 𝒙 by sampling from the 𝑝(𝒙|𝒛) given the sampled 𝒛

Marginal likelihood in latent variable models

𝒙𝒛
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o Question: how to find the optimal parameters 𝜽?

o Maximizing log-likelihood, again

log ෑ

𝒙∈𝐷

𝑝 𝒙 = 
𝒙
log 𝑝(𝒙) = 

𝒙
log 

𝒛
𝑝𝜽(𝒙, 𝒛)

o Like in Boltzmann machines, the σ𝒛 … is a nasty one
◦ E.g., for a 3-dimensional binary 𝒛 iterate over [0,0,0],[0,0,1],[0,1,1],…

◦ For 20 dimensions 220 ≈ 1𝑀 latents and generations. Per image 𝒙!

◦ For continuous 𝒛 even harder, we cannot even enumerate

Intractable 𝑝𝜽(𝒙, 𝒛)
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o We want to optimize per data point 𝒙: log σ𝒛 𝑝𝜽(𝒙, 𝒛)

o The sum contains a bunch of probabilities
◦ equivalent to expected value times the number of summands

log 
𝒛
𝑝𝜽(𝒙, 𝒛) = log 𝑍 𝔼 𝑝𝜽 𝒙, 𝒛

o Do we need all the summands to compute the expected value (average)
◦ No, if we sample randomly 𝒛 (uniformly) and average, it gives us an estimate
◦ Basically replace whole sum with a weighted smaller sum

log 𝑍 𝔼 𝑝𝜽 𝒙, 𝒛 ≈ log
𝑍

𝐾
𝔼𝒛~Uniform

𝐾
𝑝𝜽 𝒙, 𝒛 = log

𝑍

𝐾


𝑘=1

𝐾

𝑝𝜽 𝒙, 𝒛𝑘

o Doesn’t scale, too many samples for the expectation estimate to be accurate
◦ Most 𝒛𝑘 would be in ‘very low density regions’ → Unimportant 𝑝𝜽 𝒙, 𝒛𝑘
◦ In technical terms, this is a ‘high variance’ estimator

Making 𝑝𝜽(𝒙, 𝒛) tractable with naive Monte Carlo
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o Better if select few good summands in the sum σ𝑘=1
𝐾 𝑝𝜽 𝒙, 𝒛𝑘

o If, theoretically, we had a nice distribution around the mass of relevant 𝒛𝑘
◦ we could use that distribution to sample 𝒛𝑘 and get a better sample average with fewer 𝑘

log 
𝒛
𝑝𝜽(𝒙, 𝒛) = log 

𝒛

𝑞𝜑 𝒛
1

𝑞𝜑 𝒛𝑘
𝑝𝜽 𝒙, 𝒛𝑘

= log 𝔼𝒛~𝒒𝜑(𝒛)

𝑝𝜽 𝒙, 𝒛

𝑞𝜑 𝒛
≈ log

1

𝐾


𝑘=1

𝐾
𝑝𝜽 𝒙, 𝒛𝑘

𝑞𝜑 𝒛𝑘
, where 𝒛𝑘 are sampled from 𝑞𝜑 𝒛𝑘

o Note the dual use of 𝑞𝜑 𝒛𝑘

◦ In the nominator 𝑞𝜑 𝒛𝑘 is the density function we use as sampling mechanism. By 
sampling from it (e.g., Gaussian samples if it is Gaussian) this quantity is used and 
disappears by the sum

◦ In the denominator 𝑞𝜑 𝒛𝑘 is simply a function. We feed it 𝒛𝑘 and returns how important 𝒛𝑘
is for our probability space

o Scales much better and with much lower variance, but we don’t know what is a good 𝑞𝜑 𝒛𝑘

Making 𝑝𝜽(𝒙, 𝒛) tractable with importance sampling MC



UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES                                                                                    DEEPER INTO DEEP 
LEARNING AND OPTIMIZATIONS - 8

EFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – 8 VISLabEFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – ‹#› VISLabEFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – 8 VISLabEFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – 8 VISLab

o Importance sampling is promising but how to determine 𝑞𝜑 𝒛𝑘 ?

o Learn 𝑞𝜑 𝒛𝑘 from data!

o Our learning objective is to maximize the log probability

log 𝔼𝒛~𝑞𝝋(𝒛)

𝑝𝜽 𝒙, 𝒛

𝑞𝝋 𝒛
≈ log

1

𝐾


𝑘=1

𝐾
𝑝𝜽 𝒙, 𝒛𝑘

𝑞𝝋 𝒛𝑘

o The log 𝔼 stands for logarithm of an unknown integral
◦ not very convenient for derivations and computations

o Would be much nicer if we could swap the log 𝔼 to 𝔼 log
◦ Then we would simply need the expectation of the logarithm of a function
◦ Especially convenient if 𝑝𝜽 𝒙, 𝒛 belongs to the exponential family

Learning the importance sampling distribution
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o A concave function ℎ (like a logarithm)on a sum will always be larger than the 
sum of ℎ on individual summands
◦ Basically, a line connecting two points of a function will be always below the 

function

ℎ 𝑡𝑥1 + 1 − 𝑡 𝑥2 ≥ 𝑡ℎ 𝑥1 + 1 − 𝑡 ℎ(𝑥2)

o With probabilities and random variables this translates to

ℎ 𝔼[𝒙] ≥ 𝔼[ℎ(𝒙)]

Jensen’s inequality

log

ℎ(𝑥1)

ℎ(𝑥2)

Jensen Inequality

https://en.wikipedia.org/wiki/Jensen's_inequality
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o By applying Jensen’s inequality

log 𝔼𝒛~𝒒𝜑(𝒛)

𝑝𝜽 𝒙, 𝒛

𝑞𝜑 𝒛
≥ 𝔼𝒛~𝒒𝜑(𝒛) log

𝑝𝜽 𝒙, 𝒛

𝑞𝜑 𝒛

o We replaced the original ML objective with a quantity that is always smaller

◦ (1) By improving 𝔼𝒛~𝒒𝜑(𝒛) log
𝑝𝜽 𝒙,𝒛

𝑞𝜑 𝒛
we always improve log 𝔼𝒛~𝒒𝜑(𝒛)

𝑝𝜽 𝒙,𝒛

𝑞𝜑 𝒛

◦ ‘Lower bound’

o (2) 𝔼𝒛~𝒒𝜑(𝒛) log
𝑝𝜽 𝒙,𝒛

𝑞𝜑 𝒛
is a tractable & comfortable quantity → easy optimization

◦ An expectation → Monte Carlo sampling is possible

◦ The log can couple nicely with 𝑝𝜽 if chosen properly

A lower bound on the maximum likelihood
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o We can also view variational inference from the lens of intractability

o The problematic quantity in our latent model is the posterior
◦ The reason is the intractable normalization

𝑝 𝒛|𝒙 =
𝑝 𝒙, 𝒛

𝑝(𝒙)
=

𝑝 𝒙, 𝒛

 𝒑 𝒙, 𝒛 𝑑𝒛

o Variational inference approximates the true posterior 𝑝 𝒛|𝒙 with 𝑞𝜑 𝒛|𝒙

KL 𝑞(𝒛) ∥ 𝑝(𝒛|𝒙) = න 𝑞𝜑(𝒛) log
𝑞𝜑 𝒛

𝑝 𝒛 𝒙
𝑑𝒛

= − න 𝑞𝜑 𝒛 log
𝑝 𝒙, 𝒛

𝑝 𝒙 𝑞𝜑 𝒛
𝑑𝒛 = − න 𝑞𝜑 𝒛 log

𝑝 𝒙, 𝒛

𝑞𝜑 𝒛
+ න 𝑞𝜑 𝒛 log 𝑝 𝒙 𝑑𝒛

= −𝔼𝑞𝜑 𝒛 log
𝑝 𝒙, 𝒛

𝑞𝜑 𝒛
+ log 𝑝(𝒙)

Making 𝑝(𝒛|𝒙) tractable with variational inference
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o 𝔼𝒛~𝒒𝜑(𝒛) log
𝑝𝜽 𝒙,𝒛

𝑞𝜑 𝒛
also known as ‘evidence lower bound’

log 𝑝(𝒙) = 𝔼𝑞 𝒛 log
𝑝 𝒙, 𝒛

𝑞𝝋 𝒛
+ KL 𝑞𝝋(𝒛) ∥ 𝑝(𝒛|𝒙)

= ELBO + KL 𝑞𝝋(𝒛) ∥ 𝑝(𝒛|𝒙)

o Why ‘evidence’?
◦ The KL term is always positive

◦ If we drop it, we bound the log evidence log 𝑝(𝒙) from below

log 𝑝(𝒙) ≥ 𝔼𝑞𝝋 𝒛 log
𝑝𝜽 𝒙, 𝒛

𝑞𝝋 𝒛

o Higher ELBO → smaller difference to true 𝑝𝜽 𝒛 𝒙 → better latent representation

o Higher ELBO → gap to log-likelihood tightens → better density model

Evidence lower bound
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Variational inference, graphically
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o We can expand the ELBO as

𝔼𝑞 𝒛 log
𝑝 𝒙, 𝒛

𝑞𝝋 𝒛
= 𝔼𝑞 𝒛 log

𝑝𝜽 𝒙|𝒛 𝑝(𝒛)

𝑞𝝋 𝒛

= 𝔼𝑞𝝋 𝒛 log 𝑝𝜽(𝒙|𝒛) − KL 𝑞𝝋(𝒛) ∥ 𝑝(𝒛)

o The first term encourages the reconstructions that the maximize likelihood

o The second term minimizes the distance of the variational distribution from 
the prior

ELBO balancing reconstruction and the prior
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o We can also expand the ELBO as

𝔼𝑞𝝋 𝒛 log
𝑝 𝒙, 𝒛

𝑞𝝋 𝒛
= 𝔼𝑞𝝋 𝒛 log

𝑝𝜽 𝒙|𝒛 𝑝(𝒛)

𝑞𝝋 𝒛

= 𝔼𝑞 𝒛 log 𝑝(𝒙, 𝒛) − 𝔼𝑞 𝒛 log 𝑞𝝋 𝒛

= 𝔼𝑞 𝒛 log 𝑝(𝒙, 𝒛) + 𝐻(𝑞𝝋(𝒛))

where H(⋅) is the entropy

o Maximizing the joint likelihood → Something like the Boltzmann energy

o While maintaining enough entropy (‘uncertainty’) in the distribution of latents
◦ Avoiding latents to collapse to pathological, point estimates (𝒛 as single values) 

ELBO and entropy regularization 
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o If you noticed, for the second way to derive the ELBO we minimized

KL 𝑞𝝋(𝒛) ∥ 𝑝(𝒛|𝒙) = න 𝑞𝝋(𝒛) log
𝑞𝝋 𝒛

𝑝 𝒛 𝒙
𝑑𝒛

◦ We want to sample from 𝑞𝝋(𝒛) in expectations later on, as 𝑝 𝒛 𝒙 is intractable

o The model wants to approximate 𝑝 𝒛 𝒙 → can’t really know where 𝑝 𝒛 𝒙 is low

o The model prefers to hedge and ‘bias’ 𝑞𝝋 𝒛 towards 0 for regions it can’t be certain 

◦ Better pick one mode (randomly) than miss a ‘zero’ density region of 𝑝 𝒛 𝒙 and 

skyrocket the 
𝑞𝝋 𝒛

𝑝 𝒛 𝒙

Variational inference underestimates variance

Model ignores this mode

1st run 2nd run

Model ignores this mode

Approximate posterior

True posterior
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o You would need to use the forward KL

KL 𝑝(𝒛|𝒙) ∥ 𝑞𝛗(𝒛) = න 𝑝 𝒛 𝒙 log
𝑝𝜽 𝒛 𝒙

𝑞𝝋 𝒛
𝑑𝒛

o The model would prefer placing some density everywhere

◦ That way it avoids 
𝑝 𝒛 𝒙
𝑞𝝋 𝒛

skyrocketing if it misses areas where 𝑝 𝒛 𝒙

How to overestimate variance?

Overestimating variance Underestimating variance


